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ABSTRACT

In this paper, we study the learned iterative shrinkage thresholding algorithm
(LISTA) for solving sparse coding problems. Following assumptions made by prior
works, we first discover that the code components in its estimations may be lower
than expected, i.e., require gains, and to address this problem, a gated mechanism
amenable to theoretical analysis is then introduced. Specific design of the gates is
inspired by convergence analyses of the mechanism and hence its effectiveness can
be formally guaranteed. In addition to the gain gates, we further introduce overshoot
gates for compensating insufficient step size in LISTA. Extensive empirical results
confirm our theoretical findings and verify the effectiveness of our method.

1 INTRODUCTION

Sparse coding serves as the foundation of many machine learning applications, e.g., the direction-of-
arrival estimation (Xu et al., 2012), signal denoising (Elad & Aharon, 2006), and super resolution
imaging (Yang et al., 2010). In general, it aims to recover an inherently sparse vector xs ∈ Rn from
an observation y ∈ Rm corrupted by a noise vector ε ∈ Rm. That is,

y = Axs + ε, (1)

in which A ∈ Rm×n is an over-complete basis matrix. The problem of recovering xs, however, is
a challenging task, in which the main difficulties are to incorporate the sparse constraint which is
nonconvex and to further determine the indices of its non-zero elements, i.e., the support of the vector.
A reasonable solution to the problem is to use convex functions as surrogates to relax the constraint
of sparsity, among which the most classical one probably is the l1-norm penalty. Such a problem is
carefully studied in Lasso (Tibshirani, 1996), and it can be solved via least angle regression (Efron
et al., 2004), the iterative shrinkage and thresholding algorithm (ISTA) (Daubechies et al., 2004), etc.

Despite the simplicity, these conventional solvers suffer from critical shortcomings. Taking ISTA as
an example, we know that 1) it converges very slowly with only a sublinear rate (Beck & Teboulle,
2009), 2) the correlation between each of the two columns of A should be relatively low. In recent
years, deep learning (LeCun et al., 2015) methods have achieved remarkable successes. Deep neural
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networks (DNNs) have been proven both effective and efficient in dealing with many tasks, including
image classification (He et al., 2016), object detection (Girshick, 2015), speech recognition (Hinton
et al., 2012), and also sparse coding (Gregor & LeCun, 2010; Wang et al., 2016; Borgerding et al.,
2017; He et al., 2017; Zhang & Ghanem, 2018; Chen et al., 2018; Liu et al., 2019; Sulam et al., 2019).
The core idea behind deep learning-based sparse coding is to train DNNs to approximate the optimal
sparse code. For instance, an initial work of Gregor and LeCun’s (2010) takes the inspiration from
ISTA and develops an approximator named learned ISTA (LISTA), which is structurally similar to a
recurrent neural network (RNN).

It has been demonstrated both empirically and theoretically that LISTA is superior to ISTA (Wang
et al., 2016; Moreau & Bruna, 2017; Giryes et al., 2018; Chen et al., 2018). Nevertheless, it is also
uncontroversial that there exists much room for further enhancing it. In this paper, we delve deeply
into the foundation of (L)ISTA and discover possible weaknesses of LISTA. First and foremost, we
know from prior arts (Chen et al., 2018; Liu et al., 2019) that LISTA tends to learn large enough biases
to achieve no “false positive” in the support of generated codes and further ensure linear convergence,
and we prove that this tendency, however, also makes the magnitude of the code components being
lower than that of the ground-truth. That said, there probably exists a requirement of gains in the code
estimations. Second, regarding the optimization procedure of ISTA as to minimize an upper bound of
its objective function at each step, we conjecture that the element-wise update of (L)ISTA normally
“lags behind” the optimal solution, which suggests that it requires overshoots to reach the optimum,
just like what has been suggested in fast ISTA (FISTA) (Beck & Teboulle, 2009) and learned FISTA
(LFISTA) (Moreau & Bruna, 2017).

In this paper, our main contributions are summarized as follows:

• We discover weaknesses of LISTA by theoretically analyzing its optimization procedure, for
mitigating which we introduce gain gates and overshoot gates, akin to update gate and reset
gate mechanisms in the gated recurrent unit (GRU) Cho et al. (2014).

• We provide convergence analyses for LISTA (with or without gates), which further give rise
to conditions on which the performance of our method with gain gates can be guaranteed. A
practical case is considered, where the assumption of no “false positive” is relaxed.

• Insightful expressions for the gates are presented. In comparison with state-of-the-art sparse
coding networks (not limited to previous extensions to LISTA), our method achieves superior
performance. It also applies to variants of LISTA, e.g., LFSITA (Moreau & Bruna, 2017)
and ALISTA (Liu et al., 2019).

Notations: In this paper, unless otherwise clarified, vectors and matrices are denoted by lowercase and
uppercase characters, respectively. For vectors/matrices originally introduced without any subscript,
adding a subscript (e.g., i) indicates its element/column at the corresponding position. For instance,
for x ∈ Rn, xi represents the i-th element of the vector, and W:,i and Wi,: denote the i-th column and
row of a matrix W respectively. While for vectors introduced with subscripts already, e.g., xs, we
use (xs)i to denote its i-th element. The operator � is used to indicate element-wise multiplication
of two vectors. The support of a vector is denoted as supp(x) := {i|xi 6= 0}. We use supxs

as the
simplified form of supxs∈X (B,s,0), see Assumption 1 for the definition of X (B, s, 0).

2 BACKGROUND

In general, sparse coding solves the problem that can be formulated as

min
x
f(x, y) + λr(x), (2)

in which f(x, y) calculates the residual of approximating y using a linear combination of column-wise
features in A. The function f(x, y) is convex with respect to x in general. In particular, if ε is a
Gaussian vector, then it should be f(x, y) = ‖Ax− y‖22. The term λr(x) serves as a regularizer for
sparsity and we have r(x) = ‖x‖1 in Lasso. As mentioned, a variety of algorithms can be applied to
solve the problem and our focus in the paper is (L)ISTA. We first revisit the optimization procedure of
ISTA, which is the foundation of LISTA as well. Given y, let us introduce a scalar γ > 0 that fulfills
γI −∇2

xf(x, y) � 0,∀x, then it can be considered as optimizing an upper bound of the objective
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function obtained via Taylor expansion. To be more specific, for any presumed x(t), we have

f(x, y) + λr(x) ≤ f(x(t), y) + (x− x(t))∇xf(x(t)) +
γ

2
‖x− x(t)‖2 + λr(x). (3)

By substituting r(x) with ‖x‖1 and optimizing the bound in an element-wise manner, we can easily
get the one-step update rule that zeros the gradient based on x(t). It is, x(0) = 0 and

x(t+1) = sλ/γ(x(t) −∇xf(x(t))/γ), ∀t ≥ 0, (4)

in which sb(x) := sign(x)(|x| − b)+ is a shrinking function and (·)+ is a rectified linear unit (ReLU)
calculating max{0, ·}. For Gaussian noises, the formulation reduces to

x(t+1) = sλ/γ

((
I − ATA

γ

)
x(t) +

AT

γ
y

)
. (5)

The update as shown in Eq. (4) and (5) can be performed iteratively until convergence. However, the
convergence of ISTA (along with some other conventional solvers) is known to be slow, and it has
been shown that DNNs can be utilized to accelerate the procedure. Many researchers have explored
the idea since the initial work of Gregor and LeCun’s (i.e., LISTA). For LISTA, they design deep
architectures following the main procedure of ISTA yet to learn parameters in an end-to-end manner
from data (Gregor & LeCun, 2010; Hershey et al., 2014). The inference process of LISTA is similar
to that of an RNN and can be formulated as x(0) = 0 and

x(t+1) = sb(t)(W
(t)x(t) + U (t)y), t = 0, · · · , d− 1, (6)

where Θ = {U (t),W (t), b(t)}t=0,1,...,d−1, is learnable parameters set. Some works (Xin et al., 2016;
Chen et al., 2018) have proved that W (t) and U (t) should satisfy the constraint W (t) = I − U (t)A,
such that

x(t+1) = sb(t)(x
(t) + U (t)(Ax(t) − y)), t = 0, · · · , d− 1. (7)

The parameters in Θ are normally learned from a set of training samples by minimizing the difference
between the final code estimations and ground-truth. In this paper, our main assumption for theoretical
analyses follows those of prior works (Chen et al., 2018; Liu et al., 2019) in a noiseless case, and
noisy cases will be considered in the experiments.
Assumption 1. The sparse vector xs and noise vector ε are sampled from a set X (B, s, 0) fulfilling:

X (B, s, 0) := {x
∣∣‖x‖∞ ≤ B, ε = 0, ‖x‖0 ≤ s}.

3 SPARSE CODING WITH GAIN GATES AND OVERSHOOT GATES

In this section, we will introduce the advocated gain gates and overshoot gates. Along with thorough
discussions for the motivations, their formulations are provided in Section 3.1 and 3.2, respectively.
Figure 1 summarizes the inference process of the standard LISTA and two evolved versions with our
gates incorporated. Proofs of all our theoretical results are deferred to the appendix.

Figure 1: The inference process of the standard LISTA and evolved versions with our gates

3.1 SPARSE CODING WITH GAIN GATES

Recent works have shown linear convergence of LISTA (Chen et al., 2018; Liu et al., 2019). In order
to guarantee the convergence, it is also demonstrated that the value of bias terms should be large
enough to eliminate all “false positive” in the support of the generated codes. However, this may lead
to an issue that the magnitude of the generated code components in LISTA must be smaller than or at
most equal to those of the ground-truth. Our result in Proposition 1 makes this formal. For clarity of
the result, we would like to introduce the following definition first.
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Definition 1. (Liu et al., 2019) Given a matrix A ∈ Rm×n, its generalized mutual coherence is:

µ(A) := inf
W∈Rn×m,Wi,:A:,i=1,∀i

{
max

i6=j,1≤i,j≤n
Wi,:A:,j

}
. (8)

We letW(A) denote a set of all matrices that can achieve the generalized mutual coherence µ(A),
which means:

W(A) :=
{
W
∣∣ max
i6=j,1≤i,j≤n

Wi,:A:,j = µ(A),Wi,:A:,i = 1,∀i
}
. (9)

Proposition 1. (Requirement of gains). With U (t) ∈ W(A) and W (t) = I − U (t)A, if b(t) =
µ(A) supxs

‖x(t) − xs‖1 is achieved in LISTA to guarantee no “false positive” (i.e., supp(x(t)) ⊂
supp(xs)) and further linear convergence (i.e., ‖x(t) − xs‖2 ≤ sB exp(ct), in which c = log((2s−
1)µ(A))), then we have for the estimation |x(t)

i | ≤ |(xs)i| and x(t)
i (xs)i ≥ 0,∀i ∈ supp(xs).

Provided Proposition 1 as the evidence of a potential weakness of LISTA, we believe that if the code
components can be enlarged appropriately, then the estimation at each step would be closer to xs,
and the convergence of LISTA will be further improved, which inspires us to design a gate to enlarge
the generated code components. Such a gate is named as a gain gate and it acts on the input to the
current estimation, akin to a reset gate in GRU (Cho et al., 2014), which is

x(t+1) = sb(t)(W
(t)(gt(x

(t), y|Λ(t)
g )� x(t)) + U (t)y), (10)

in which the gate function gt(·, ·|Λ(t)
g ) outputs an n-dimensions vector, and Λ

(t)
g is the set of its

learnable parameters. In the original implementation of LISTA, the output of each layer is obtained by
calculating Eq. (4) iteratively. It has been proven that the estimation x(t) ultimately converges to the
ground-truth xs (as t→∞), only if the condition of (W (t) − (I − U (t)A))→ 0 holds. That said, it
is suggested that U (t) and W (t) are entangled to the end. Yet, with our gated mechanism, the update
rule in neural networks has been modified into Eq. (10), making it unclear whether the convergence
is guaranteed similarly or not. To figure it out, we perform theoretical analyses in depth, which will
further provide guidance for the gate design. We are going to explore: whether the learnable matrices
are still entangled as in LISTA, and to encourage fast convergence, what properties should the gate
function satisfy? Theorem 1 and 2 give some answers to these questions and they are based on the
same assumptions as for Proposition 1.

Theorem 1. If the s-th principal minor of W (t) have full rank, then for the gate function bounded
from both above and below, we have xs as the fixed point of Eq. (10) only if

diag(gt(x
(t), y|Λ(t)

g ))→ D and W (t)D − (I − U (t)A)→ 0, as t→∞, (11)

in which D is an n× n constant diagonal matrix and the function diag(·) creates a diagonal matrix
with the elements of its input on the main diagonal.

From Theorem 1 we can equivalently have (W̃ (t) − (I − U (t)A))→ 0 by defining W̃ (t) := W (t)D,
which means the learnable matrices are similarly entangled as in the standard LISTA. Besides, we
know that as the number of layers increases, each introduced gain gate should ultimately converge to
a constant (diagonal) matrix D to guarantee performance. Then if W (t) → I − U (t)A, the gain gate
function converges to an identical mapping as t→∞, and vice versa. This inspires us to “split” the
gate function into an identical one and a residual one, and we thus advocate, for each index i of the
vector, the i-th element of gain gate is

gt(x
(t), y|Λ(t)

g )i = 1 + κt(x
(t), y|Λ(t)

g )i and κt(x
(t), y|Λ(t)

g )i ≥ 0, (12)

in which κt(x(t), y|Λ(t)
g )i is the i-th element of κt(x(t), y|Λ(t)

g ), and it should decrease as t increases,
in order to guarantee convergence in Eq. (11). Let us further study the convergence rate of “LISTA”
equipped with such gain gates. For clarity, we introduce another condition for the function before
moving to more details:

κt(x
(t), y|Λ(t)

g )i < 2b
(t−1)
i /|x(t)

i |. (13)

We present theoretical results as follows on the basis of Proposition 1, i.e., we still have U (t) ∈ W(A),
W (t) = I − U (t)A and Assumption 1, but the requirement for b(t) is different.
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Theorem 2. If b(t) = µ(A) supxs
‖xs − x(t) � gt(x(t), y|Λ(t)

g )‖1 is achieved, following the update
rule in Eq. (10), if the conditions in Eq. (12) and (13) hold for the gate function, there will be

‖x(t) − xs‖2 ≤ sB exp(

t−1∑
i=1

ci + c), (14)

in which c = log((2s− 1)µ(A)), ci = c if i ≤ dlog( sB
‖xs‖1 )/ log( 1

(2s−1)µ(A) )e, and ci < c otherwise.

Theorem 2 presents an upper bound of ‖x(t) − xs‖2 for LISTA with gain gates, and it shows that so
long as the gates satisfying conditions in Eq. (12) and (13) are introduced, the “convergence factor”
c+
∑
ci of our gated LISTA would be smaller in comparison with that of the standard LISTA (which

is ct, see Proposition 1 and Chen et al.’s work 2018).

By consolidating all these theoretical cues, we further give principled expressions for the gate function.
One may expect to endow the gates some learning capacities, thus we let

gt(x
(t), y|Λ(t)

g ) = 1 + κt(x
(t), y|Λ(t)

g ) = 1 + µtb
(t−1)ft(x

(t)|νt), (15)

in which µt ∈ R is a parameter to be learned, b(t−1) is the threshold parameter of the (t− 1)-th layer,
and ft(x(t)|νt) is a newly introduced function constrained not to be greater than 2/|x(t)|. We are
going to evaluate different choices for the function ft(x(t)) in experiments, e.g.,

the piece-wise linear function: ft(x(t)|νt) = ReLU(1− ReLU(νt|x(t)|)),
the inverse proportional function: ft(x(t)|νt) = 1/(νt|x(t)|+ ε),

the exponential function: ft(x(t)|νt) = exp(−νt|x(t)|),

(16)

in which νt ∈ R is a parameter to be learned, and ε is a tiny positive scalar introduced to avoid zero
being divided. All the learnable parameters in a gain gate are thus collected as Λ

(t)
g = {µt, νt}.

3.1.1 NO FALSE POSITIVE?

Our previous theoretical results show that the performance of LISTA can be improved by using a gain
gate, as long as the gate function satisfies conditions in Eq. (12) and (13), and no “false positive” is
encountered. However, it is not always true in practice. Our experimental results also show that when
the inverse proportional function is adopted as gain gates in lower layer for LISTA, the performance
of our gated LISTA may even degrade. We conjecture that such contradiction to the theoretical results
may be owing to impractical assumptions. In this subsection, we try to relax the assumption about no
“false positive”, and we further found that a tighter bound can be achieved with a more reasonable
assumption instead. Through theoretical analyses as follows, we also demonstrate that the inverse
proportional gain function should better be only adopted in higher layers. For clarity of the results,
we would like to introduce the following definition first.

Definition 2. Given a model with Θ, in which b(t) = Γµ(A) supxs
‖x(t) � gt(x(t), y|Λ(t)

g )− xs‖1,
we introduce ωt+1(k|Θ) to characterize its relationship with the false positive rate, which is

ωt+1(kt+1|Θ) = sup
∀xs,|supp(x̌(t+1))∪supp(xs)|≤|supp(xs)|+kt+1

Γ,

in which x̌(t+1) := sb(t)(W
(t)(x(t) � gt(x(t), y|Λ(t)

g )− xs)), and kt+1 ≥ 0 is the desired maximal
number of “false positive” of x(t+1).

The above definition applies to both the standard LISTA and LISTA with gain gates (we can let the
gate function be an identity function to achieve a standard LISTA). We first analyze the convergence
of LISTA without gates. We present theoretical results as follows on the basis of similar assumptions
(including Assumption 1, U (t) ∈ W(A), and W (t) = I − U (t)A), but with a different requirement
for b(t) from Proposition 1.

Theorem 3. If b(t) = ωt+1(kt+1|Θ)µ(A) supxs
‖x(t) − xs‖1 is achieved, and ∃0 < k

(t)
0 < s such

that ωt(k
(t)
0 |Θ) < 1− 1/(s− k(t)

0 ), then there exists “false positive” with 0 < kt < s and

‖x(t) − xs‖2 ≤ sB exp(

t∑
i=1

c∗i ),

in which c∗i < log((2s− 1)µ(A)).
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It can be seen that when we relax the assumption about no “false positive” and further reduce the value
of the threshold b(t), the error bound of LISTA becomes even lower. Obviously, the previous bound
of LISTA with gain gates in Theorem 2 is not necessarily lower than the tighter bound of a standard
LISTA in Theorem 3, which well explains the contradiction of theoretical and empirical results.
Here we re-deduce the error bound of our gated LISTA with the inverse proportional function in the
following theorem. Note that we still have U (t) ∈ W(A), W (t) = I − U (t)A and Assumption 1.

Theorem 4. Suppose that mini∈supp(xs) |(xs)i| ≥ σ > 0, if b(t) = ωt+1(kt+1|Θ)µ(A) supxs
‖x(t)�

gt(x
(t), y|Λ(t)

g )−xs‖1 is achieved and ∃0 < k
(t)
0 < s such that ωt(k

(t)
0 |Θ) < 1− 1/(s− k(t)

0 ), then

‖x(t) − xs‖2 ≤ sB exp(

t−1∑
i=1

c′i + c′∗t ),

in which c′∗t < log((2s − 1)µ(A)). ∃t0 = dlog( sBσ )/ log( 1
(2s−1)µ(A) )e if the scaling factor µi of

the gate has µi = 0 for i ≤ t0, 0 < ki < s, then c′i = c∗i , and if 1 − ωi(s|Θ) < µi ≤ 1 for i > t0,
ki = 0, then c′i < c∗i .

We can conclude from Theorem 4 that, a) a gain gate expressed by the inverse proportional function
should be applied to deeper layers in LISTA, rather than lower layers, b) when using the function,
there indeed exists no “false positive” (i.e., ki = 0) in deeper layer. We follow such guidelines in
the implementation of our gated LISTA. In addition, we observe that unlike the inverse proportional
function, other considered functions show consistent performance gains on both lower and higher
layers, hence we attempt to utilize them on lower layers in alliance with the inverse proportional
function powered gain gates on the other layers. In practice, we choose the ReLU-based piece-wise
linear function, and it is uniformly applied to the first 10 layers. We will empirically compare different
choices between the gain gate functions in Section 4.1.

3.2 SPARSE CODING WITH OVERSHOOT GATES

Unlike the gain gates that are incorporated before performing estimation at each step, the overshoot
gates act more like adjustments to the outputs, which can be viewed as learnable boosts:

x̃(t+1) = sb(t)(W
(t)x(t) + U (t)y),

x(t+1) = ot(x
(t), y|Λ(t)

o )� x̃(t+1) + (1− ot(x(t), y|Λ(t)
o ))� x(t).

(17)

The gate function ot(·, ·|Λ(t)
o ) : {Rn,Rm} → Rn outputs an n-dimensional vector and Λ

(t)
o collects

all the trainable parameters in the function, akin to a dedicated update GRU gate (Cho et al., 2014).

Our motivation comes from analyses of ISTA, whose update can be viewed as x(t) +η(x(t+1)−x(t)),
in which η = 1 is a constant step size. We argue that η = 1 may not be the most suitable choice and
the following proposition makes this formal. We have it to theoretically analyze the update rule of
ISTA and η∗ := arg minη f(η(x(t+1) − x(t)) + x(t), y) + λ‖η(x(t+1) − x(t)) + x(t)‖1.
Proposition 2. (Requirement of overshoots) For minx f(x, y) + λ‖x‖1, in which f(x, y) is convex
with respect to x and γI −∇2

xf(x) � 0 holds for all x, if the update rule in Eq. (4) is adopted, then
we have η∗ ≥ 1. In addition, if supp(x(t)) ⊂ supp(x(t+1)), then we further have η∗ > 1.

See also Figure 2 for an illustration of the issue with η = 1 as concerned. Since the optimization
procedure of ISTA inspires the network architecture in LISTA, the theoretical result in Proposition 2
that requires a boost in η for superior performance also inspires us to design specific overshoot gates
for LISTA. Having noticed that an essential principle we have obtained is to let η ≥ 1 (or η > 1), we
may expect the output of the gate function to be greater than or at least equal to 1. To achieve the
goal, we can try different expressions for it, e.g.,

the sigmoid-based function: ot(x(t), y|Λ(t)
o ) = 1 + aoσ(Wox

(t) + Uoy)

∣∣∣∣∣∑
i

yi

∣∣∣∣∣ ,
the inverse-proportional-based function: ot(x(t), y|Λ(t)

o ) = 1 +
ao

|x̃(t+1) − x(t)|+ ε
,

(18)
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with σ(·) being the sigmoid function, Λ
(t)
o = {ao,Wo, Uo} and Λ

(t)
o = {ao} for the two types of

functions respectively, and ε being a tiny positive constant introduced to avoid zero being divided.
The principle of our overshoot gate is similar to that of some momentum-based methods, e.g.,
FISTA (Beck & Teboulle, 2009) and LFISTA (Moreau & Bruna, 2017). The fundamental difference
between these methods and ours is that, (L)FISTA considers that the scaling factor in a momentum
term should be independent of the current inputs (including the previous estimation and y), i.e., being
time or at least input invariant, while the output of the overshoot gate is a function of both the previous
estimation and y, hence being time-and-input-varying. The design of our overshoot gate may endow
the sparse coding network higher capability to learn from its inputs. Experimental comparisons in
Section 7 in the Appendix confirm the superiority of our method.

We also note that our convergence analyses in Section 3.1 generalize to η > 1 cases with a constant
η, i.e., linear convergence can still be guaranteed, but the asymptotic behavior with learnable and
adaptive overshoots should be further explored in future studies.

Figure 2: The derivative function (illustrated in blue) of f(x, y) + λr(x), in which r(x) = ‖x‖1, is
monotonic owing to the convexity of f(x, y) and r(x), and its output should be consistently smaller
than the derivative (illustrated in orange) of the upper bound in absolute value. Let x∗ be the optimal
solution to the problem, then we know from the figure that the estimation with a standard ISTA update
(i.e., η = 1) normally “lags behind”.

4 EXPERIMENTS

In this section, we perform experiments to confirm our theoretical results and evaluate the performance
of our gated sparse coding networks. Validations of our theoretical results are performed on synthetic
data, and the performance of our method in sparse coding is tested on both synthetic and real data.
We set m = 250, n = 500, and sample the elements of the dictionary matrix A randomly from a
standard Gaussian distribution in simulations. The position of non-zero elements of the sparse vector
xs is determined by a Bernoulli sampling with a probability of 0.1 (which means approximately 90%
of the elements are set to be zero). Different noise levels and condition numbers are considered in the
sparse coding simulations. We randomly synthesize in-stream xs and ε to obtain y for training, and
we let two extra sets consisting of 1000 samples each as the validation and test sets, just like in prior
works1. (Chen et al., 2018; Liu et al., 2019; Borgerding et al., 2017).

For the proposed gated LISTA and other deep learning-based methods, we set d = 16 and let {b(t)}
not be shared between different layers under all circumstances. The weight matrices {W (t), U (t)}
are not shared either in our method and the coupled constraints W (t) = I − U (t)A, ∀t, are imposed.
For all gates, νt is initialized as 1.0, and then we let the initial value of µt in the inverse proportional
function powered gain gate be 1.0 too, since Eq. (12) and (13) indicate 0 ≤ µt ≤ 2. Other learnable
parameters in our gates are uniformly initialized as 5.0 according to their suggested range of the gates.
The training batch size is 64. We use Adam (Cho et al., 2014) and let β1 = 0.9 and β2 = 0.999. The
hyper-parameters are tuned on the validation set and fixed for all our experiments in the sequel. Our
training follows it of Chen et al.’s (2018). That said, the sparse coding network is trained progressively
to update more layers, and we cut the learning rate for currently optimized layers when no decrease in
the validation loss can be observed for 4000 iterations, with a base learning rate of 0.0005. Training
on current layers stops when the validation loss does not decrease any more with the learning rate
being cut to 0.00001. More details are explained in Section 8 in the appendix.

Our training objective for a network with d intermediate update steps is
min

Θ
E‖x(d) − xs‖22, (19)

1The core codes of this paper could be find in github https://github.com/wukailun/GLISTA/.
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(a) FPR vs index of layers (b) Ratio of lower components (c) NMSE vs # of layers

Figure 3: Average results confirming our Proposition 1 and Theorem 2, in which intermediate outputs
of a single network over five runs are reported in (a) and (b) while networks with varying depth are
evaluated in (c), over five runs as well. It is plotted from layer indices of 1 in (a) and (b), since the
two metrics (i.e., false positive rate and ratio of generated non-zero code components that require
gains) do not make much sense with an initial code estimation (i.e., 0).

(a) (b)
Figure 4: Average results over the whole test set confirm our Theorem 1, in which intermediate
outputs of a single network is reported. It can be seen that: (a) the gate output converges to 1, and (b)
LISTA with our gain gates converges as expected. It is plotted from layer index 1 in (a) since no gain
is imposed on the initial code estimation (i.e., 0.)

in which Θ = {W (t), U (t), b(t)}t=0,...,d−1 ∪ Λ(0) ∪ . . .Λ(d−1) is the set of all learnable parameters
in the sparse coding network that generates x(d) given y. Note that in comparison with the parameter
set in a standard LISTA, it also contains the parameters in gate functions. In practice, we are given a
set of training samples and opt to minimize an empirical loss instead of the one in Eq. (19).

Our evaluation metric for sparse coding is the normalized MSE (NMSE) (Chen et al., 2018):

NMSE(x, xs) = 10 log10(‖x− xs‖22/‖xs‖22). (20)

4.1 SIMULATION EXPERIMENTS

4.1.1 VALIDATION OF THEORETICAL RESULTS

Validation of Proposition 1: We first confirm Proposition 1. In order to ensure that LISTA fulfills
the assumption about no “false positive”, we introduce an auxiliary loss into the learning object as:

λ
∑
t

∑
j /∈supp(xs)

|x(t)
j |. (21)

We formally introduce the false positive rate (FPR) as FPR = |supp(x(t))∪supp(xs)|−|supp(xs)|
|supp(x(t))| and try to

approach no “false positive” (i.e., LISTA-nfp) by setting λ = 5.0 in the experiment. 2 Check Figure 3
for an illustrative comparison between different models, we see LISTA-nfp achieves almost no “false
positive” in practice in Figure 3(a), but its convergence is slower as demonstrated in Figure 3(c),
which is consistent with our result in Theorem 3. In addition, we also see in Figure 3(b) that without
“false positive”, the code components in LISTA estimations are almost always less than those of the
ground-truth, which confirms our Proposition 1.

Validation of Theorem 1: We aim to calculate ‖W (t)D− (I −U (t)A)‖2 using a gated LISTA with
the introduced ReLU-based piece-wise linear gain gate function 3. To accomplish this task, we need
to first evaluate the output of our gate function, which is expect to converge to 1 as shown in the
theorem. We show such a trend indeed exists in Figure 4(a). Consequently, the matrix D is supposed

2The FPR here is slightly different from the general false positive rate by calculating only in the obtained
non-zero code components.

3Other functions can be adopted and the same results can be obtained.
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(a) (b) (c)

Figure 5: Comparison of different (a) overshoot gate functions, (b) gain gate functions, and (c) their
combination over five runs. The experiment is performed with SNR=40dB.

to be an identity matrix in the end and we can calculate ‖W (t) − (I − U (t)A)‖2 as a surrogate. In
Figure 4(b), it converges to zero in the end and the results confirm the theorem.

Validation of Theorem 2: We apply three kinds of gated LISTA with an alliance of gain gate
functions (i.e., what has been introduced in Section 3.1.1), the exponential function, and the inverse
proportional function respectively to verify our theoretical results. They were named as GLISTA
(which is the abbreviation of gated LISTA), GLISTA-exp, GLISTA-inv, respectively. From Figure 3(c),
we see that when the models with such gain gates has no “false positive”, all of them are superior
to the standard LISTA without “false positive” as well, which is consistent with the conclusion of
Theorem 2. In addition, from Figure 3(a), we can also see that there actually exist “false positives” in
lower layers of GLISTA, but even without the auxiliary loss term, the evaluated FPR of our GLISTA
and it variants approach zero in higher layers, which is in good agreement with Theorem 4.

4.1.2 COMPARISON WITH COMPETITORS

Empirical analyses for the gate functions: It should be interesting to compare the performance of
our gates with different expressions. We test LISTA with different overshoot gate functions introduced
in Section 3.2 in Figure 5(a). Both of them are incorporated with their learnable parameters being
shared among layers. It can be seen from Figure 5(a) that the accelerations in convergence and
gain in final performance are obvious, just as expected. For LISTA with gain gates, one can check
Figure 5(b). It can be seen that the performance degrades a lot if either the bias term or the µt term
is removed. We also try different ft(·) functions, including the ReLU-based piece-wise linear one
and some possibly more nonlinear ones as mentioned in Section 3.1. We confirm that gate functions
whose outputs are relatively closer to the boundary condition may perform better. Yet, it is worth
noting that when the outputs of inverse proportional function reach that boundary condition and being
applied uniformly to all layers, the performance degrades (see LISTA-inv-ε in Figure 5(b)). These
results suggest an alliance of gain gate functions in practice. We further test a combination of gain
gates and overshoot gates, despite the mechanism with solely gain gates is already good enough. See
Figure 5(c), when overshoots are further incorporated, the convergence on lower layers becomes
faster while the overall convergence is not affected much, leading to similar final performance when
the model is very deep and superior performance when the model is relatively shallow.

Compared with other state-of-the-art methods: We consider four state-of-the-arts: LISTA with
support selections (namely LISTA-C-S and LISTA-S, with and without the coupled constraint) (Chen
et al., 2018), analytic LISTA with support selections (ALISTA-S) (Liu et al., 2019), and learned AMP
(LAMP) (Borgerding et al., 2017) for comparison, and their official implementations are directly
used. The hyper-parameters are set following the papers (Borgerding et al., 2017; Chen et al., 2018).
We compare our GLISTA with these competitive methods under different levels of noises (including
the signal-to-noise ratios (SNRs) being equal to 40dB, 20dB, and 10dB) and different condition
numbers (including 3, 30, and 100, with SNR=40dB). See Figure 6 for comparisons between LISTA,
LAMP, LISTA-S, LISTA-C-S, ALISTA-S, and our GLISTA in some of the settings. Obviously, the
introduced gates facilitate LISTA significantly, and the concerned NMSE diminishes the fastest using
GLISTA. See our Appendix for comparisons of final performance after multiple runs and the results
in other settings (i.e., SNR: 20dB, 40dB, and condition number: 3). We know from these results that
using the gain gates solely can already outperforms existing state-of-the-arts, while incorporating the
overshoot gates additionally may further boost the performance, as testified.

Applying our method to variants of LISTA: We also try adopting the introduced gates into some
variants of LISTA to verify their “generalization ability”. Specifically, we incorporate the gain gates to
LFISTA (Moreau & Bruna, 2017) and ALISTA (Liu et al., 2019) to obtain GFLISTA and AGLISTA,
respectively. Since ALISTA is suggested to be implemented with support set selection in the original
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(a) SNR=10dB (b) condition number=30 (c) condition number=100
Figure 6: Comparison of sparse coding methods in different settings over five runs. Our GLISTA
consistently outperforms the competitors in almost all test cases with different numbers of layers.

paper, i.e. ALISTA-S, we also compare with it. The experiment is performed under different levels
of noises (40dB, 20dB, and 10dB). As can be seen in Table 1 in which average results along with
their standard deviations calculated over five runs are reported, models with our gain gates perform
significantly better, which verifies that our method generalizes well.

Table 1: Comparison of LISTA and its variants (with and without gates) under different noise levels.
SNR LISTA GLISTA LFISTA GLFISTA ALISTA AGLISTA ALISTA-S

40 -38.72±0.09 -45.22±0.02 -37.84±0.32 -38.30±0.10 -37.86±0.35 -42.30±0.13 -41.86±0.04
20 -18.65±0.09 -23.08±0.03 -20.90±0.02 -22.00±0.07 -17.38±0.05 -20.13±0.03 -20.00±0.05
10 -9.42±0.08 -11.41±0.02 -10.67±0.04 -11.20±0.01 -8.39±0.04 -9.13±0.02 -9.04±0.02

4.2 PHOTOMETRIC STEREO ANALYSIS

We now test on a more practical task, i.e., photometric stereo analysis, using sparse coding. For a 3D
object with Lambertian surface, if there are q different light conditions, a camera or some other kinds
of sensors can obtain q different observations, all with noises caused by shadows and specularities.
The observations can be represented as a vector o ∈ Rq for estimating the norm vector v ∈ R3 at any
position on the surface. It is generally formulated as o = ρLv + e, in which L ∈ Rq×3 represents the
normalized light directions (q directions), e ∈ Rq is a noise which is often sparse, ρ ∈ R represents
the albedo reflectivity. Our task is to obtain v from o and L which is also known. The estimation of
e can be considered as a sparse coding problem, and one can use L†(o− e) to recover v given the
estimation. More detailed descriptions of the task can be found in Xin et al.’s paper (2016).

In the sparse coding problem, we have Q ∈ R(q−3)×q (the orthogonal complement of L) as the
dictionary matrix (i.e., A in Eq. (1)), e as the sparse code to be estimated, and Qo as the observation
(i.e., y in Eq. (1)). We mainly follow settings in Xin et al.’s work, e.g. the vectors of L are randomly
selected from the hemispherical surface, except that we test with q = 15, 25, 35, and let 40% of the
elements of e be non-zero. We use GLISTA here to estimate e and the final result for v is calculated
as L†(o− e∗), where L† ∈ R3×q is the pseudo-inverse of L and e∗ is the estimation. Our method is
compared with LISTA and two traditional methods where no explicit training is introduced, i.e. the
original least square (LS) and least L1, in Table 2. Our evaluation metric is the mean (± standard
deviation) error in degree and it is calculated using the bunny picture (Xin et al., 2016).

Table 2: Mean (± standard derivation) error in degree with different number of observations over five
runs.

q LS L1 LISTA GLISTA

35 5.37 1.39 0.0237±0.0026 0.00210±0.00044
25 5.60 2.03 0.0429±0.0068 0.00524±0.00024
15 6.09 4.25 0.371±0.046 0.0255±0.0054

5 CONCLUSION

In this paper, we study LISTA for solving sparse coding problems. We discover its potential weak-
nesses and introduce gated mechanisms to address them accordingly. In particular, we theoretically
prove that LISTA with gain gates can achieve faster convergence than the standard LISTA. We also
discover that LISTA (with or without gates) can obtain lower reconstruction errors under a weaker
assumption of “false positive” in its code estimations. It helps us improve the convergence analyses to
achieve more solid theoretical results, which have been perfectly confirmed in simulation experiments.
The effectiveness of our introduced gates is verified in a variety of sparse coding experiments and the
state-of-the-art performance is achieved. In the future, we aim to extend the method to convolutional
neural networks to deal with more complex tasks.
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APPENDIX

6 PROOF OF THEOREMS AND PROPOSITIONS

Before we delve deeply into the proof, we first give some importance notations. We define S as the
support of the vector xs, i.e. S = supp(xs), and let |S| denote the number of elements in the set S.
For a vector that shares the same size with xs, say z, we denote by zS ∈ R|S| a vector that keeps
the elements with indices of z in S and removes the others. If the vectors have been introduced with
subscripts already, e.g. xs, we use (xs)S to denote vectors obtained in such a manner. For a square
matrix with the same number of row and column as the size of xs, say M , M(S,S) is its principal
minor with the index set formed by removing rows and columns whose indices are not in S . Assume
a vector x with no zero elements, sign(·) is defined as (sign(x))i = xi/|xi|, i.e. (sign(x))i = 1 when
xi > 0, and (sign(x))i = −1 when xi < 0.

6.1 PROOF OF PROPOSITION 1

Recall that the update rule of LISTA is x(0) = 0 and

x(t+1) = sb(t)(W
(t)x(t) + U (t)y), t = 0, · · · , d− 1. (22)

Proof. Recall the definition of S is S = supp(xs). For the shrinking function z = sb(t)(x) =
sign(x)(|x| − b(t))+ = x − b(t)h(z), where h(z) = 1 if z > 0, h(z) = −1 if z < 0, and
h(z) ∈ [−1, 1] if z = 0.

We use Mathematical Induction to prove supp(x(t)) ⊂ S,∀t = 0, 1, . . . , d − 1. We assume
supp(x(t)) ⊂ S. From the calculation of x(t+1)

i , as W (t) = I − U (t)A there is

x
(t+1)
i = sb(t)((W

(t)x(t) + U (t)y)i)

= sb(t)((W
(t)x(t) + U (t)Axs)i)

= sb(t)(((I − U (t)A)(x(t) − xs))i + (xs)i)

= ((I − U (t)A)(x(t) − xs))i + (xs)i − b(t)h(x
(t+1)
i ).

(23)

For ∀i /∈ S, (xs)i = 0. Let’s assume x(t+1)
i 6= 0, then h(x

(t+1)
i ) = sign(x

(t+1)
i ). Multiply the two

sides of the Eq. (23) by sign(x
(t+1)
i ), as the b(t) = µ(A) supxs

‖x(t) − xs‖1, there will be

|x(t+1)
i | = ((I − U (t)A)(x(t) − xs))isign(x

(t+1)
i )− b(t)

= ((I − U (t)A)(x(t) − xs))isign(x
(t+1)
i )− µ(A) sup

xs

‖x(t) − xs‖1

≤ µ(A)‖x(t) − xs‖1 − µ(A) sup
xs

‖x(t) − xs‖1 ≤ 0,

(24)

the inequality holds for ~a ·~b ≤ ‖~a‖∞‖~b‖1 and ‖I − U (t)A‖∞ ≤ µ(A) (because of U (t) ∈ W(A)).
From Eq. (24), we know |x(t+1)

i | ≤ 0 actually is |x(t+1)
i | = 0 which is in conflict with x(t+1)

i 6= 0.
Therefore, the x(t+1)

i = 0, when i /∈ S , i.e., supp(x(t+1)) ⊂ S . As x(0) = 0 ⊂ S , the supp(x(t)) ⊂
S,∀t. The no “false positive” property has been proved.
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According to Eq. (23), as support set of xs and x(t) are the subsets of S, there is

x
(t+1)
i − (xs)i = ((I − U (t)A)(x(t) − xs))i − b(t)h(x

(t+1)
i )

=
∑
j∈S

(I − U (t)A)ij(x
(t)
j − (xs)j)− b(t)h(x

(t+1)
i )

|x(t+1)
i − (xs)i| ≤ |

∑
j∈S

(I − U (t)A)ij(x
(t)
j − (xs)j)|+ b(t).

(25)

As supp(x(t+1)) ⊂ S, accumulate all |x(t+1)
i − (xs)i| in Eq. (25) with i ∈ S, there is

‖x(t+1) − xs‖1 ≤
∑
i∈S

∑
j∈S

(I − U (t)A)ij(x
(t)
j − (xs)j) + |S|b(t)

≤
∑
i∈S

∑
j∈S,i6=j

|(I − U (t)A)ij ||x(t)
j − (xs)j |+ |S|b(t)

≤ (|S| − 1)µ(A)‖x(t) − xs‖1 + |S|b(t).

(26)

The second equation is because of U (t) ∈ W(A), so that |Wi,:A:,j | ≤ µ(A) when i 6= j and
|Wi,:A:,j | = 1 when i = j. Substitute b(t) = µ(A) supxs

‖x(t) − xs‖1 into Eq. (26), and take the
supremum of Eq. (26). As |S| ≤ s there is

sup
xs

‖x(t+1) − xs‖1 ≤ (s− 1)µ(A) sup
xs

‖x(t) − xs‖1 + sµ(A) sup
xs

‖x(t) − xs‖1

≤ (2s− 1)µ(A) sup
xs

‖x(t) − xs‖1

≤ ((2s− 1)µ(A))t+1 sup
xs

‖x(0) − xs‖1.

(27)

Let c = log((2s− 1)µ(A)), the l2 error bound of t-th layer in LISTA should be calculated as

‖x(t) − xs‖2 ≤ ‖x(t) − xs‖1 ≤ sup
xs

‖x(t) − xs‖1

≤ ((2s− 1)µ(A))t sup
xs

‖x(0) − xs‖1

= exp(ct) sup
xs

‖x(0) − xs‖1

≤ sB exp(ct),

(28)

where the last inequality is deduced since (xs)i ≤ B, and ‖xs‖0 ≤ s. The linear convergence has
been proved.

Refer to the Eq. (25), as x(t+1)
i = 0 when i /∈ S, |x(t+1)

i | ≤ |(xs)i| and x(t+1)(xs)i ≥ 0 hold
certainly. We only concentrate on i ∈ S

x
(t+1)
i − (xs)i = ((I − U (t)A)(x(t) − xs))i − b(t)h(x

(t+1)
i ). (29)

If x(t+1)
i = 0, there must be |x(t+1)

i | = 0 ≤ (xs)i, and x(t+1)
i (xs)i = 0.

If x(t+1)
i > 0, the according to Eq. (29), x(t+1)

i − (xs)i = ((I − U (t)A)(x(t) − xs))i − b(t) =

((I−U (t)A)(x(t)−xs))i−µ(A) supxs
‖x(t)−xs‖1 ≤ 0, i.e., 0 < x

(t+1)
i ≤ (xs)i, |x(t+1)

i | ≤ |(xs)i|,
and x(t+1)

i (xs)i > 0.

If x(t+1)
i < 0, the according to Eq. (29), x(t+1)

i − (xs)i = ((I − U (t)A)(x(t) − xs))i + b(t) =

((I−U (t)A)(x(t)−xs))i+µ(A) supxs
‖x(t)−xs‖1 ≥ 0, i.e., 0 > x

(t+1)
i ≥ (xs)i, |x(t+1)

i | ≤ |(xs)i|,
and x(t+1)

i (xs)i > 0.

In conclusion, we can obtain |x(t+1)
i | ≤ |(xs)i| and x(t+1)(xs)i ≥ 0 for all the situations.
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6.2 PROOF OF THEOREM 1

Recall that the update rule of LISTA with gain gates is x(0) = 0 and

x(t+1) = sb(t)(W
(t)(gt(x

(t), y|Λ(t)
g )� x(t)) + U (t)y). (30)

Proof. We assume that b(t) is a vector, i.e., b(t) ∈ Rn, in our proof to make it more general.

According to definition of the shrinking function sb(t)(·) and y = Axs, Eq. (10) is

x(t+1) = sb(t)(W
(t)(gt(x

(t), y|Λ(t)
g )� x(t)) + U (t)y)

= W (t)gt(x
(t), y|Λ(t)

g )� x(t) + U (t)y − b(t) � h(x(t+1))

= W (t)diag(gt(x
(t), y|Λ(t)

g ))x(t) + U (t)Axs − b(t) � h(x(t+1))

= W (t)diag(gt(x
(t), y|Λ(t)

g ))x(t) + U (t)Axs − b(t) � h(x(t+1)).

(31)

Concentrate on the situation of t→∞. Define gκ(xs) = gt(xs, y|Λ(t)
g ) when t→∞. In the main

body of Theorem 1, ∀xs satisfying ‖xs‖0 ≤ s is the fixed point of Eq. (10) when t→∞. Eq. (31) is

xs = W (t)diag(gκ(xs))xs + U (t)Axs − b(t) � h(xs). (32)
The equation group of the indices in S in Eq. (32) is

(xs)S = (((W (t)diag(gκ(xs)) + U (t)A)xs)S − b(t)S � h((xs)S)

= (W (t)(S,S)diag(gκ((xs)S)) + (U (t)A)(S,S))(xs)S − b(t)S � h((xs)S).
(33)

Let (xs)S → 0 but (xs)S 6= 0 so that h((xs)S) = sign((xs)S). As W (t), U (t), A and gκ(xs) =

gt(xs, y|Λ(t)
g ) are bounded, the right hand side of Eq. (33) is also tend to 0, which is

b
(t)
S → 0, as t→∞. (34)

As the S can be selected arbitrarily as long as |S| ≤ s, b(t) also satisfies

b(t) → 0, as t→∞. (35)

Substitute the b(t)S of Eq. (34) into Eq. (33), (xs)S is

(xs)S = (W (t)(S,S)diag(gκ((xs)S))S + (U (t)A)(S,S))(xs)S , (36)

where the W (t)(S,S) is defined at start of this section. Eq. (36) is

(I − U (t)A)(S,S)(xs)S = W (t)(S,S)diag(gκ((xs)S))(xs)S ,

(I − U (t)A)(S,S)(xs)S = W (t)(S,S)diag((xs)S)gκ((xs)S),

gκ((xs)S) = diag(((xs)S)−1)(W (t)(S,S))−1(I − U (t)A)(S,S)(xs)S ,

diag(((xs)S)−1)M(xs)S = gκ((xs)S),

(37)

where M = (W (t)(S,S))−1(I − U (t)A)(S,S). The i-th row and j-th column element in M is
denoted as mij . From Eq. (37), (gκ(xs))S is

(gκ(xs))S =


((xs)S)−1

1

((xs)S)−1
2

...
((xs)S)−1

|S|


 m11 m12 ... m1|S|

m21 m22 ... m2|S|
... ... ... ...

m|S|1 m|S|2 ... m|S||S|


 ((xs)S)1

((xs)S)2

...
((xs)S)|S|



=


∑|S|

i=1m1i((xs)S)i
((xs)S)1∑|S|

i=1m2i((xs)S)i
((xs)S)2
...∑|S|

i=1m|S|i((xs)S)i
((xs)S)|S|

,
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where this equation should hold for all xs in Assumption 1. Assume (xs)S → 0, for gκ(xs) is
bounded, we can conclude that mij = 0, if i 6= j. From Eq. (38), the final form of gκ((xs)S) is
formulated as

gκ((xs)S) =

 m11

m22

...
m|S||S|

. (38)

From Eq. (38), we can conclude that gκ(xs)i is a constant if i ∈ S , as the S could be arbitrary subset
of {1, · · · , n} as long as |S| ≤ s. We could deduce that gκ(xs)i is constant ∀i ∈ {1, . . . , n} and
gκ(xs) must be constant vector, i.e.

diag(gκ(xs)) = D, (39)

where D is an n× n constant diagonal matrix. The first part of conclusion of Theorem 1 has been
proved.

Substitute b(t) in Eq. (34) and diag(gκ(xs)) in Eq. (39) into Eq. (32), Eq. (32) is.

xs = (W (t)D + U (t)A)xs,

xs = Zxs,
(40)

where Z = W (t)D + U (t)A = [Z1, Z2, . . . , Zn] and the Zi is the i-th column of Z.

Give a xs satisfying only the i-th element of xs is non-zero and all the other elements are equal to
zero, i.e., xs = [0, 0, . . . , ω, . . . , 0]T = ωei, in which ei is basis vector with only the i-th element
being 1 and ω 6= 0. Substitute the xs = ωei into Eq. (40), there is

xs = Zxs,

ωei = [Z1, Z2, . . . , Zn][0, 0, . . . , ω, . . . , 0]T ,

ωei = ωZi,

ω(ei − Zi) = 0.

(41)

As the Eq. (41) should hold for ∀ω 6= 0, we can deduce that Zi = ei. As the i is selected arbitrarily,
Z = W (t)D + U (t)A = [Z1, Z2, . . . , Zn] = [e1, e2, . . . , en] = I . Thus we have completed the
proof and get

W (t)D = (I − U (t)A) as t→∞. (42)

6.3 PROOF OF THEOREM 2

Recall that the update rule of LISTA with gain gates is x(0) = 0 and

x(t+1) = sb(t)(W
(t)(gt(x

(t), y|Λ(t)
g )� x(t)) + U (t)y). (43)

Proof. We simplify the gt(x(t), y|Λ(t)
g ) as gt(x(t)), and κt(x(t), y|Λ(t)

g ) as κt(x(t)). According to
the definition of gain gate in Eq. (43), we have

x(t+1) = sb(t)(W
(t)(x(t) � gt(x(t)) + U (t)y)

= sb(t)(W
(t)(x(t) � gt(x(t)) + U (t)Axs)

= sb(t)((I − U (t)A)(x(t) � g(x(t))− xs) + xs)

= (I − U (t)A)(x(t) � g(x(t))− xs) + xs − b(t)h(x(t+1)).

(44)

Simplify the x(t) � g(x(t)) − xs as ∆gx
(t). For the i-th equation in Eq. (44), and i /∈ S, give the

value of b(t) = µ(A) supxs
‖x(t) � g(x(t))− xs‖1, there is

x
(t+1)
i = ((I − U (t)A)(∆gx

(t)))i − b(t)h(x
(t+1)
i )

= ((I − U (t)A)(∆gx
(t)))i − µ(A) sup

xs

‖∆gx
(t)‖1h(x

(t+1)
i ).

(45)
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With almost the same proof process in Proposition 1, we could deduce that

supp(x(t+1)) ⊂ xs, (46)
which is the no “false poistive” property.

Recall the Eq. (44) and substitute the 1 + κt+1(x(t+1)) = gt+1(x(t+1)) into it:

x(t+1) = ((I − U (t)A)(∆gx
(t)))− b(t)h(x(t+1)) + xs,

x(t+1)(1 + κt+1(x(t+1))) = (I − U (t)A)(∆gx
(t))− b(t)h(x(t+1))

+ xs + x(t+1) � κt(x(t+1)),

∆gx
(t+1) = (I − U (t)A)(∆gx

(t))− b(t)h(x(t+1)) + x(t+1) � κt(x(t+1)).

(47)

We shall calculate the non-zero |∆gx
(t+1)
i | with the index i. The i could be seperated to two parts.

One is i ∈ S but i /∈ supp(x(t+1)), another one part is i ∈ S and i ∈ supp(x(t+1)). Two kinds of i
are discussed respectively.

For i ∈ S but i /∈ supp(x(t+1)), there must be x(t+1)
i = 0 and −1 ≤ h(x

(t+1)
i ) ≤ 1. Select the i-th

equation in Eq. (47), there is

|∆gx
(t+1)
i | = |((I − U (t)A)(∆gx

(t)))i − b(t)h(x
(t+1)
i )|

≤ µ(A)
∑

j∈S,j 6=i

|∆gx
(t)
j |+ |b

(t)|. (48)

For i ∈ S and i ∈ supp(x(t+1)), there must be x(t+1) 6= 0 and h(x(t+1)) = sign(x(t+1)). Select the
i-th equation in Eq. (47), there is

|∆gx
(t+1)
i | = ((I − U (t)A)(∆gx

(t)))i − b(t)h(x
(t+1)
i ) + x

(t+1)
i κt+1(x

(t+1)
i )

≤ µ(A)
∑

j∈S,j 6=i

|∆gx
(t)
j | − b

(t)sign(x
(t+1)
i )

+ sign(x
(t+1)
i )(|x(t+1)

i |κt+1(x
(t+1)
i ))

= µ(A)
∑

j∈S,j 6=i

|∆gx
(t)
j |+ (|x(t+1)

i |κt+1(x
(t+1)
i )− b(t))sign(x

(t+1)
i ).

(49)

According to the condition in Eq. (12) and (13), the 0 < κt(x)� |x| < 2b(t−1). Then, |κt(x)� |x| −
b(t−1)| < b(t−1), there must ∃η < 1, so that |κt(x)� |x| − b(t−1)| ≤ ηb(t−1) < b(t−1). Substituting
it to Eq. (49), there is

|∆gx
(t+1)
i | ≤ µ(A)

∑
j∈S,j 6=i

|∆gx
(t)
i |+ (|x(t+1)

i |κt+1(x
(t+1)
i )− b(t))sign(x

(t+1)
i )

≤ µ(A)
∑

j∈S,j 6=i

|∆gx
(t)
i |+ ||x

(t+1)
i |κt+1(x

(t+1)
i )− b(t)|

≤ µ(A)
∑

j∈S,j 6=i

|∆gx
(t)
i |+ ηb(t).

(50)

Accumulate all the |∆gx
(t+1)
i | with all i ∈ S, and define s(t) = |supp(x(t))| as the number of

non-zeros elements in x(t) there is

‖∆gx
(t+1)‖1 ≤

∑
i∈S

µ(A)
∑

j∈S,j=i
|∆gx

(t)
i |+ (s(t+1)η + (|S| − s(t+1)))b(t)

≤
∑
i∈S

µ(A)
∑

j∈S,j=i
|∆gx

(t)
i |+ (s(t+1)η + (|S| − s(t+1)))b(t)

≤ (|S| − 1)µ(A)‖∆gx
(t)‖1

+ (s(t+1)η + (|S| − s(t+1)))µ(A) sup
xs

‖∆gx
(t)‖1.

(51)
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Take the supremum of Eq. (51), let s(t)
∗ denote the infimum of s(t) with all of the xs ∈ X (B, s, 0),

and ct = log((2s− 1− s(t)
∗ (1− η))µ(A)), there is

sup
xs

‖∆gx
(t+1)‖1 ≤ (s− 1)µ(A) sup

xs

‖∆gx
(t)‖1

+ (s
(t+1)
∗ η + (s− s(t+1)

∗ ))µ(A) sup
xs

‖∆gx
(t)‖1

≤ (2s− 1 + s
(t+1)
∗ (1− η)) sup

xs

‖∆gx
(t)‖1

≤ exp(ct+1) sup
xs

‖∆gx
(t)‖1

≤ exp(

t+1∑
i=1

ci) sup
xs

‖∆gx
(0)‖1 ≤ exp(

t+1∑
i=1

ci)sB.

(52)

Eq. (52) gives the upper bound of supxs
‖∆gx

(t+1)‖1, next we shall deduce the relationship between
‖x(t) − xs‖1 and it. For the last layer (t-th layer), from Eq. (44), we have

x
(t+1)
i = ((I − U (t)A)(∆gx

(t)))i − µ(A) sup
xs

‖∆gx
(t)‖1h(x

(t+1)
i ) + (xs)i,

x
(t+1)
i − (xs)i = ((I − U (t)A)(∆gx

(t)))i − µ(A)h(x
(t+1)
i ) sup

xs

‖∆gx
(t)‖1,

|x(t+1)
i − (xs)i| ≤ |((I − U (t)A)(∆gx

(t)))i|+ µ(A) sup
xs

‖∆gx
(t)‖1.

(53)

Using almost the same process in Eq. (26) and Eq. (27), we could deduce Eq. (53) that

‖x(t+1) − xs‖1 ≤ (2s− 1)µ(A) sup
xs

‖∆gx
(t)‖1,

‖x(t) − xs‖1 ≤ (2s− 1)µ(A) sup
xs

‖∆gx
(t−1)‖1

≤ (2s− 1)µ(A) exp(

t−1∑
i=1

ci)sB

= exp(

t−1∑
i=1

ci + c)sB,

(54)

where the third inequality sign holds because of Eq. (52) and the last equation holds because of
c = log((2s− 1)µ(A)).

As at least ct ≤ c satisfies, there will be supxs
‖x(t) − xs‖1 ≤ exp(ct)sB. Set t0 =

dlog( sB
‖xs‖1 )/ log( 1

(2s−1)µ(A) )e. When i > t0, supxs
‖x(i) − xs‖1 ≤ exp(ci)sB < ‖xs‖1,

‖x(i) − xs‖1 < ‖xs‖1, then the s(i)
∗ = |supp(x(i))| > 0, ci = log(2s − 1 + s

(i)
∗ (1 − η))µ(A) <

log((2s− 1)µ(A)) = c.

In conclusion, from Eq. (54), there is

‖x(t) − xs‖2 ≤ ‖x(t) − xs‖1 ≤ exp(

t−1∑
i=1

ci + c)sB, (55)

where c = log((2s− 1)µ(A)), ci = c when i ≤ t0, and ci < c when i > t0.

6.4 PROOF OF THEOREM 3

Proof. For the t-th layer of the LISTA, according to the Eq. (23), we have

x
(t+1)
i = ((I − U (t)A)(x(t) − xs))i + (xs)i − b(t)h(x

(t+1)
i ). (56)
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As we have remove the no false positive assumption, supp(x
(t)
i ) * S. Define S(t) as ∀i ∈ S(t)

satisfies i ∈ supp(x(t)) but i /∈ S. In order to calculate all of non-zero x(t+1)
i − (xs)i with index i,

we divide the i into two kinds, i ∈ S and i ∈ S(t+1).

If i ∈ S, from Eq. (56), we can deduce the same formulation as Eq. (25):

|x(t+1)
i − (xs)i| ≤

∑
j∈supp(x(t))

(I − U (t)A)ij(x
(t)
j − (xs)j) + b(t)

≤
∑

j∈supp(x(t))

|(I − U (t)A)ij(x
(t)
j − (xs)j)|+ b(t).

(57)

If i ∈ S(t+1), then the (xs)i = 0 but x(t+1)
i , then h(x

(t+1)
i ) = sign(x

(t+1)
i ). From Eq. (56), there is

x
(t+1)
i = ((I − U (t)A)(x(t) − xs))i − b(t)h(x

(t+1)
i )

= ((I − U (t)A)(x(t) − xs))i − b(t)sign(x
(t+1)
i ).

(58)

Multiply sign(x
(t+1)
i ) on Eq. (58), we have

|x(t+1)
i | = ((I − U (t)A)(x(t) − xs))isign(x

(t+1)
i )− b(t),

|x(t+1)
i |+ b(t) = ((I − U (t)A)(x(t) − xs))isign(x

(t+1)
i ),

(|x(t+1)
i |+ b(t))sign(x

(t+1)
i ) = ((I − U (t)A)(x(t) − xs))i,

(59)

which means ((I − U (t)A)(x(t) − xs))i have the same sign with sign(x
(t+1)
i ) because |x(t+1)

i | > 0

and b(t) > 0, i.e.,
((I − U (t)A)(x(t) − xs))i = |((I − U (t)A)(x(t) − xs))i|sign(x

(t+1)
i ). (60)

From the Eq. (58), substitute Eq. (60) into Eq. (58), there is

x
(t+1)
i − (xs)i = x

(t+1)
i

= sign(x
(t+1)
i )(|

∑
j∈supp(x(t))

(I − U (t)A)ij(x
(t)
j − (xs)j)|

− b(t)),

|x(t+1)
i − (xs)i| = |x(t+1)

i | = x
(t+1)
i sign(x

(t+1)
i )

= |
∑

j∈supp(x(t))

(I − U (t)A)ij(x
(t)
j − (xs)j)| − b(t)

≤
∑

j∈supp(x(t))

|(I − U (t)A)ij(x
(t)
j − (xs)j)| − b(t)

(61)

Accumulate all the |x(t+1)
i − (xs)i| with i ∈ supp(x(t+1)) ∪ supp(xs) = S(t+1) + S, there is

‖x(t+1) − xs‖1 ≤
∑

i∈S(t+1)+S

∑
j∈supp(x(t))

|(I − U (t)A)ij(x
(t)
j − (xs)j)|

+ (|S| − |S(t+1)|)|b(t)|,
≤ (|S(t+1)|+ |S|)µ(A)‖x(t) − xs‖1 + (|S| − |S(t+1)|)b(t).

(62)

Substitute the b(t) = ωt+1(kt+1|Θ)µ(A) supxs
‖x(t) − xs‖1 into Eq. (62), and take its supremum of

right part:

‖x(t+1) − xs‖1 ≤ (|S(t+1)|+ |S|)µ(A) sup
xs

‖x(t) − xs‖1

+ (|S| − |S(t+1)|)ωt+1(kt+1|Θ)µ(A) sup
xs

‖x(t) − xs‖1

≤ (|S(t+1)|+ |S|+ (|S| − |S(t+1)|)ωt+1(kt+1|Θ))

µ(A) sup
xs

‖x(t) − xs‖1.

(63)
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Take the supremum of left part of (63), there is

sup
xs

‖x(t+1) − xs‖1 ≤ exp(c∗t+1) sup
xs

‖x(t) − xs‖1, (64)

where c∗t+1 = supxs
log((|S(t+1)| + |S| + (|S| − |S(t+1)|)ωt+1(kt+1|Θ))µ(A)). According to

the definition of ωt(·), b(t) = ωt+1(kt+1|Θ)µ(A) supxs
‖x(t) − xs‖1, so that the number of false

positive is less or equal than kt+1, i.e. |S(t+1)| ≤ kt+1. According to the previous proof, when
b(t) = µ(A) supxs

‖x(t) − xs‖1, the number of false positive satisfies kt+1 = 0. That means that
ω(0|Θ) ≤ 1 and ω(k|Θ) ≤ 1 when k > 0 4. The c∗t+1 should be

c∗t+1 = sup
xs

log((|S(t+1)|+ |S|+ (|S| − |S(t+1)|)ωt+1(kt+1|Θ))µ(A))

= log((s+ kt+1 + (s− kt+1)ωt+1(kt+1|Θ))µ(A)).
(65)

As assumption of ωt+1(·|Θ), ∃kt+1
0 , s.t. 0 < kt+1

0 < s, and ωt+1(kt+1
0 |Θ) < 1 − 1/(s − kt+1

0 ).
Select the value of b(t) so that kt+1 = kt+1

0 , we substitute it to Eq. (65), there will be

c∗t+1 = log((s+ kt+1 + (s− kt+1)ωt+1(kt+1|Θ))µ(A))

< log((s+ kt+1 + (s− kt+1)(1− 1

s− kt+1
))µ(A))

= log((2s− 1)µ(A)).

(66)

Recall the Eq. (64), we have

sup
xs

‖x(t+1) − xs‖1 ≤ exp(c∗t+1) sup
xs

‖x(t) − xs‖1

≤ exp(

t+1∑
i=1

c∗i ) sup
xs

‖x(0) − xs‖1

≤ exp(

t+1∑
i=1

c∗i )sB.

(67)

The l2 error bound of the t-th layer of LISTA is

‖x(t) − xs‖2 ≤ ‖x(t) − xs‖1 ≤ sup
xs

‖x(t) − xs‖1 ≤ sB exp(

t∑
i=1

c∗i ), (68)

where c∗i < log((2s− 1)µ(A)).

6.5 PROOF OF THEOREM 4

Proof. For the t-th layer given in Eq. (10), according to Eq. (47),

x(t+1) = ((I − U (t)A)(∆gx
(t)))− b(t)h(x(t+1)) + xs, (69)

and
∆gx

(t+1) = (I − U (t)A)(∆gx
(t))− b(t)h(x(t+1)) + x(t+1) � κt(x(t+1)). (70)

As the no false positive is not fit for x(t), x(t) * S. We still define S(t) as ∀i ∈ S(t) satisfies
i ∈ supp(x

(t)
i ) but i /∈ S and define S(t) as ∀i ∈ S(t) satisfies i ∈ S and i ∈ supp(x(t)). In order

to calculate the non-zero ∆gx
(t+1)
i , we divide the i into three situations: i ∈ S(t+1), i /∈ S(t+1) but

i ∈ S, and i ∈ S(t+1).

4According to the definition of ωt, ωt must be a monotonic decreasing function and ωt(k|Θ) < 1 when
k > 0.
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For i ∈ S(t+1), there must be x(t+1)
i 6= 0 , and (xs)i 6= 0. Substitute the form of κt into i-th equation

of Eq. (70):

∆gx
(t+1)
i = ((I − U (t)A)(∆gx

(t)))i − b(t)sign(x(t+1)) + µt+1b
(t)sign(x

(t+1)
i )

= ((I − U (t)A)(∆gx
(t)))i − (1− µt+1)b(t)sign(x(t+1)),

|∆gx
(t+1)
i | ≤ |((I − U (t)A)(∆gx

(t)))i|+ (1− µt+1)b(t),

(71)

we have assume µt ≤ 1

For i /∈ S(t+1) but i ∈ S, x(t+1)
i = 0, and (xs)i 6= 0. The i-th equation of Eq. (70) is

∆gx
(t+1)
i = ((I − U (t)A)(∆gx

(t)))i − b(t)sign(x
(t+1)
i ),

|∆gx
(t+1)
i | ≤ |((I − U (t)A)(∆gx

(t)))i|+ b(t).
(72)

For i ∈ S(t+1), (xs)i = 0.

∆gx
(t+1)
i = x

(t+1)
i gt(x

(t+1)
i ) = ((I − U (t)A)(∆gx

(t)))i − (1− µt+1)b(t)sign(x(t+1)), (73)

As gt(x
(t+1)
i ) ≥ 1, the sign of x(t+1)

i gt(x
(t+1)
i ) is the same as that of x(t+1)

i . Multiply sign(x
(t+1)
i )

on Eq. (73), there is

|x(t+1)
i gt(x

(t+1)
i )| = ((I − U (t)A)(∆gx

(t)))isign(x(t+1))− (1− µt+1)b(t),

|x(t+1)
i gt(x

(t+1)
i )|+ (1− µt+1)b(t) = ((I − U (t)A)(∆gx

(t)))isign(x(t+1)),
(74)

which means the ((I − U (t)A)(∆gx
(t)))i should have the same sign with sign(x(t+1)), i.e.

∆gx
(t+1)
i = sign(x(t+1))(|((I − U (t)A)(∆gx

(t)))i| − |(1− µt+1)b(t)|),

|∆gx
(t+1)
i | ≤ |((I − U (t)A)(∆gx

(t)))i| − (1− µt+1)b(t).
(75)

Accumulate all the |∆gx
(t+1)
i | with i ∈ supp(x(t+1)) ∪ supp(xs), there is

‖∆gx
(t+1)‖1 =

∑
i∈S(t+1),i∈S(t+1),i∈{S−S(t+1)}

|∆gx
(t+1)
i |

≤
∑

i∈supp(x(t+1))

|((I − U (t)A)(∆gx
(t)))i|+ ((|S(t+1)| − |S(t+1)|)(1− µt+1)

+ (|S| − |S(t+1)|))b(t)

≤ (|S|+ |S(t+1)|)µ(A)‖∆gx
(t)‖1 + ((|S(t+1)| − |S(t+1)|)(1− µt+1)

+ (|S| − |S(t+1)|))b(t).

(76)

Substitute the b(t) = ωt+1(kt+1|Θ)µ(A) supxs
‖∆gx

(t)‖1 into Eq. (76). Take the supremum of the
right part of Eq. (76):

‖∆gx
(t+1)‖1 ≤ (|S|+ |S(t+1)|)µ(A)‖ sup

xs

∆gx
(t)‖1 + ((|S(t+1)| − |S(t+1)|)(1− µt+1)

+ (|S| − |S(t+1)|))ωt+1(kt+1|Θ)µ(A) sup
xs

‖∆gx
(t)‖1

≤ (|S|+ |S(t+1)|+ ((|S(t+1)| − |S(t+1)|)(1− µt+1)

+ (|S| − |S(t+1)|))ωt+1(kt+1|Θ))µ(A) sup
xs

‖∆gx
(t)‖1.

(77)

Let
c′t+1 = sup

xs

log((|S|+ |S(t+1)|+ ((|S(t+1)| − |S(t+1)|)(1− µt+1)

+ (|S| − |S(t+1)|))ωt+1(kt+1|Θ))µ(A)).
(78)
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Take the supremum of the left part of Eq. (77), the supxs
‖∆gx

(t+1)‖1 satisfies

sup
xs

‖∆gx
(t+1)‖1 ≤ exp(c′t+1) sup

xs

‖∆gx
(t)‖1

≤ exp(

t+1∑
i=1

c′i) sup
xs

‖∆gx
(0)‖1

≤ exp(

t+1∑
i=1

c′i)sB.

(79)

After the upper bound of ‖∆gx
(t)‖1 is deduced, we shall consider about the relationship between

x(t+1) − xs and ∆gx
(t):

If i ∈ S(t+1), (xs)i = 0, and x(t+1)
i 6= 0. The i-th equation in Eq. (69) is

x
(t+1)
i − (xs)i = ((I − U (t)A)(∆gx

(t)))i − b(t)sign(x
(t+1)
i ). (80)

According to the similar analyses in previous, the sign of ((I − U (t)A)(∆gx
(t)))i is the same as

sign(x
(t+1)
i ), x(t+1)

i − (xs)i satisfies

x
(t+1)
i − (xs)i = x

(t+1)
i = (|((I − U (t)A)(∆gx

(t)))i| − b(t))sign(x
(t+1)
i ),

|x(t+1)
i − (xs)i| = |x(t+1)

i | = |((I − U (t)A)(∆gx
(t)))i| − b(t).

(81)

If i ∈ S, the x(t+1)
i − (xs)i satisfies

|x(t+1)
i − (xs)i| ≤ |((I − U (t)A)(∆gx

(t)))i|+ b(t). (82)

Accumulate all the |x(t+1)
i − (xs)i| with i ∈ supp(x(t+1)) ∪ supp(xs), there is

‖x(t+1) − xs‖1 ≤
∑

i∈supp(x(t+1))

|((I − U (t)A)(∆gx
(t)))i|+ (|S| − |S(t+1)|)|b(t)|

≤ (|S|+ |S(t+1)|)µ(A)‖∆gx
(t)‖1 + (|S| − |S(t+1)|)b(t).

(83)

Substitute the b(t) = ωt+1(kt+1|Θ)µ(A) supxs
‖∆gx

(t)‖1 into Eq. (83), take the supremum of
‖∆gx

(t)‖1:

‖x(t+1) − xs‖1 ≤ (|S|+ |S(t+1)|)µ(A) sup
xs

‖∆gx
(t)‖1

+ (|S| − |S(t+1)|)ωt+1(kt+1|Θ) sup
xs

‖∆gx
(t)‖1

≤ (|S|+ |S(t+1)|+ (|S| − |S(t+1)|)ωt+1(kt+1|Θ))µ(A) sup
xs

‖∆gx
(t)‖1.

(84)

Let c′∗ be
c′∗ = log((|S|+ |S(t)|+ (|S| − |S(t)|)ωt(kt|Θ))µ(A)). (85)

Substitute Eq. (79) and (85) into Eq. (84), the l2 error bound of LISTA with gain gate should be

‖x(t) − xs‖2 ≤ ‖x(t) − xs‖1 ≤ exp(c′∗) sup
xs

‖∆gx
(t−1)‖1

≤ exp(

t−1∑
i=1

c′i + c′∗)sB.
(86)

Then we shall discuss the value of c′i and c′∗. Let t0 = dlog( sBσ )/ log( 1
(2s−1)µ(A) )e.

When i ≤ t0, as µi = 0, which means the gain gate does not exist, there is

c′i = sup
xs

log((|S|+ |S(i)|+ (|S| − |S(i)|)ωi+1(ki+1|Θ))µ(A))

= log((s+ ki+1 + (s− ki+1)ωi+1(ki+1|Θ))µ(A)).
(87)
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∃ki0, s.t. 0 < ki0 < s and ωi(ki0|Θ) < 1 − 1/(s − ki0). According to main process in the proof
Theorem 3, let ki = ki0, 0 < ki < s, and c′i = c∗i < log((2s− 1)µ(A)).

When i > t0, supxs
‖x(i) − xs‖1 < sB exp(ci) ≤ σ ≤ mini∈supp(xs) |(xs)i|. As the minimal

absolute value of xs is less or equal than σ, S(t) = S. Select the b(i) so that ki = 0, ωi(ki|Θ) ≤ 1.
Recall the form in Eq. (78), As supxs

|Si| = ki = 0, and c′i is

c′i = sup
xs

log((|S|+ |S(i)|+ (|S| − |S(i)|)ωi(ki|Θ)µ(A))

≤ log((s+ s(1− µi))µ(A)).
(88)

As 1− ωi(s|Θ) < µi ≤ 1

c′i = log((s+ s(1− µi))µ(A))

< log((s+ sωi(s|Θ))µ(A))

< log((s+ sωi(k
i
0|Θ))µ(A))

< log((s+ ki0 + (s− ki0)ωi(k
i
0|Θ))µ(A)) = c∗i ,

(89)

i.e., c′i < c∗i . As ωi(·|Θ) is the monotone decreasing function, the second “<” in Eq. (89)holds since
ki0 < s and the last “<” holds since ki0 > 0.

|S| ≤ s, and |S(t)| ≤ kt. According to the assumption of ωt(·|Θ), ∃ki0, s.t. 0 < ki0 < s and
ωi(k

i
0|Θ) < 1−1/(s−ki0). Select b(t) to let kt = kt0. According to the similar derivation in Theorem

3, c′∗ in Eq. (85) should satisfies c′∗ ≤ log((s+kt+ (s−kt)ωt(kt|Θ))µ(A)) < log((2s−1)µ(A)).
All of the conclusions in Theorem 4 have been proven.

6.6 PROOF OF PROPOSITION 2

Recall that the update rule of ISTA is x(0) = 0 and

x(t+1) = sλ/γ(x(t) −∇xf(x(t))/γ). (90)

We have the following theorem which analyzes the update rule of ISTA and

η∗ := arg min
η
f(η(x(t+1) − x(t)) + x(t), y) + λ‖η(x(t+1) − x(t)) + x(t)‖1. (91)

Proof. According to the analysis in Section 2 in the main paper, x(t+1) is the solution of minimizing
the upper bound U(x),

U(x) := f(x(t), y) + (x− x(t))∇xf(x(t)) +
γ

2
‖x− x(t)‖2 + λr(x). (92)

The sub-gradient of U(x) is

∂xU(x) = ∇xf(x(t)) + γ(x− x(t)) + λ∂xr(x). (93)

As the x(t+1) is the optimal solution to minimizing Eq. (92), ∂xU(x(t+1)) satisfies

0 ∈ ∂xU(x(t+1)) = ∇xf(x(t)) + γ(x(t+1) − x(t)) + λ∂xr(x
(t+1)), (94)

where r(x) = ‖x‖1. According to the definition of the sub-gradient, (∂xr(x))i ∈ [−1, 1] when
xi = 0, (∂xr(x))i = −1 when xi < 0, and (∂xr(x))i = 1 when xi > 0.

From the Eq. (94), there must exists r1 ∈ r(x) such that

∇xf(x(t)) + γ(x(t+1) − x(t)) + λr1 = 0, (95)

where (r1)i = 1 if x(t+1)
i > 0, (r1)i = −1 if x(t+1)

i < 0, and −1 ≤ (r1)i ≤ 1 if x(t+1)
i < 0.

According to the definition of η∗ in Eq. (91), we define a new function θ(η) as

θ(η) = f(η(x(t+1) − x(t)) + x(t), y) + λ‖η(x(t+1) − x(t)) + x(t)‖1. (96)
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Notice that θ(η) is the line search function of f(x, y) + λ‖x‖1. According to the law of convex
optimization, as f(x, y) + λ‖x‖1 is a convex function, the θ(η) must be also a convex function about
η. The sub-gradient of θ(η) is

∂xθ(η) = (x(t+1) − x(t))T∇xf(η(x(t+1) − x(t)) + x(t))+

λ(x(t+1) − x(t))T∂xr(η(x(t+1) − x(t)) + x(t)).
(97)

The η∗ actually is the value to minimize θ(η) in Eq. (96). There must be

0 ∈ ∂xθ(η∗). (98)

From Eq. (97), the sub-gradient function of θ(η) when η = 1 is

∂ηθ(1)

=(x(t+1) − x(t))T (∇xf(x(t+1)) + λ∂xr(x
(t+1)))

=(x(t+1) − x(t))T (∇xf(x(t+1))−∇xf(x(t)) +∇xf(x(t))) + λ∂xr(x
(t+1)))

=(x(t+1) − x(t))T (∇2
xf(ζ)(x(t+1) − x(t)) +∇xf(x(t)) + λ∂xr(x

(t+1))),

(99)

where the last equation holds for Lagrange’s mean value theorem and ζ ∈ Rn. Substitute ∇xf(x(t))
in Eq. (95) into Eq. (99), the ∂ηθ(1) is

∂ηθ(1)

=(x(t+1) − x(t))T (∇2
xf(ζ)(x(t+1) − x(t))− γ(x(t+1) − x(t))− λr1 + λ∂xr(x

(t+1))

=(x(t+1) − x(t))T ((∇2
xf(ζ)− γI)(x(t+1) − x(t)) + λ(∂r(x(t+1))− r1))

=(x(t+1) − x(t))T (∇2
xf(ζ)− γI)(x(t+1) − x(t))+

λ
∑
i

(x
(t+1)
i − x(t)

i )((∂r(x(t+1)))i − (r1)i),

(100)

where the sub-gradient ∂r(x(t+1)) is a set. For all r∗ ∈ ∂r(x(t+1)),

(x(t+1) − x(t))T (∇2
xf(ζ)− γI)(x(t+1) − x(t))+

λ
∑
i

(x
(t+1)
i − x(t)

i )((r∗)i − (r1)i) ∈ ∂ηθ(1). (101)

We prove η∗ ≥ 1 according to the counter-evidence. According to the properties of convex function
and the sub-gradient, assume η∗ < 1, s.t. 0 ∈ ∂ηθ(η∗), ∀rθ ∈ ∂ηθ(1), there will be

rθ > 0.

However, as r1 ∈ ∂r(x(t+1)), substitute r = r1 ∈ ∂r(x(t+1)) into Eq. (100). The corresponding
element in sub-gradient when r = r1 is rθ = (x(t+1)−x(t))T (∇2

xf(ζ)−γI)(x(t+1)−x(t)) ∈ ∂ηθ(1).
According to given condition γI −∇2

xf(x) � 0, rθ < 0, which is in contrast to rθ > 0. Therefore,
the conclusion η∗ ≥ 1 is obtained.

Moreover, consider about the last term of Eq. (100), i.e.∑
i

(x
(t+1)
i − x(t)

i )((∂r(x(t+1)))i − (r1)i). (102)

If supp(x(t)) ⊂ supp(x(t+1)), there are two situations about index i. 1) i ∈ supp(x(t+1)), there will
be x(t+1)

i 6= 0 and (∂r(x(t+1)))i = (r1)i = sign(x
(t+1)
i ). 2) i /∈ supp(x(t+1)) and i /∈ supp(x(t)),

there will be x(t+1)
i = x

(t)
i = 0. Both conditions will make the term (x

(t+1)
i −x(t)

i )((∂r(x(t+1)))i−
(r1)i) in Eq. (102) be 0. Therefore, Eq. (102) is∑

i

(x
(t+1)
i − x(t)

i )((∂r(x(t+1)))i − (r1)i) = 0. (103)

According to the given condition γI −∇2
xf(x) � 0, ∂ηθ(1) should be a number but not a set and

∂ηθ(1) = (x(t+1)−x(t))T (∇2
xf(ζ)− γI)(x(t+1)−x(t)) < 0. As the θ(η) is convex function, there

must be η∗ > 1 because of 0 ∈ ∂ηθ(η∗). The conclusion η∗ > 1 is derived.
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Figure 7: Experimental results validating our Proposition 2. It can be observed that the update of
ISTA “lags behind”.

(a) (b)

Figure 8: Comparison of overshoot and gain gate with similar methods over five runs.

(a) SNR=20dB (b) SNR=40dB (c) condition number=3

Figure 9: Comparison of sparse coding methods under different settings over five runs. Our GLISTA
consistently outperforms the competitors in almost all test cases with different numbers of layers.

7 MORE SIMULATION EXPERIMENTS

Validation of Proposition 2: Some more experimental results are given here due to the length limit
of the main body of our paper. One might also be interested in our Proposition 2, hence we first
conduct an experiment to confirm it. We adopt ISTA with an adaptive overshoot and compare it with
the standard ISTA for sparse coding. The adaptation is obtained via enlarging the step size from 1.0
through backtracking line search (see section 7 for more details). Figure 7 demonstrates that our
overshoot mechanism facilitates ISTA optimization, and such a result confirms Proposition 2.

Comparison with similar methods: As mentioned in the main body of the paper, the overshoot
gates is proposed do address insufficient step size, which is similar to the motivation of (L)FISTA.
LIHT and support select can also be considered as special cases of our gain gates (by letting µt = 1
in the inverse proportional function). We compare these similar methods with our overshoot and
gain gates in Figure 8. It can be seen that when compared with LISTA, LFISTA converges faster in
lower layers, and our overshoot gates also show such advantage. When applying to deeper layers,
LFISTA converges quite slow while the overshoot gates still perform well, which indicates that the
time-varying property is beneficial in practice. LISTA with our gain gates is obviously better than
LIHT as shown in Figure 8(b), and sufficient experimental results in the paper also prove that the
gain gate outperforms support select (e.g., in LISTA-C-S and LISTA-S).
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Comparison under less challenging settings: Now we also give sparse coding results under the
described less challenging settings on the noise level and the condition number in Figure 9. Com-
pared with LISTA-CP, LAMP, LISTA-SS, and LISTA-CP-SS, our gated LISTA (GLISTA) performs
remarkably better with less ill-posed dictionary matrices and less noises. Table 3 and 4 report the
statistical means and standard deviations of five runs using different methods. It can be seen that the
improvement achieved by our GLISTA is significant.

Table 3: Comparison of the final NMSEs under different noise levels with d = 16. The condition
number of the dictionary is not specifically constrained.

SNR LISTA LAMP LISTA-S LISTA-C-S ALISTA-S GLISTA (ours)

40 -38.72±0.09 -36.77±0.60 -41.99±0.09 -44.85±0.02 -41.86±0.04 -45.22±0.02
20 -18.65±0.09 -18.66±0.09 -20.64±0.06 -22.84±0.02 -20.00±0.05 -23.08±0.03
10 -9.42±0.08 -9.46±0.66 -9.84±0.02 -11.06±0.01 -9.04±0.02 -11.41±0.02

Table 4: Comparison of the final NMSEs under different condition numbers with d = 16. The noise
level is chosen as SNR=40dB for all the tested condition numbers.

Con. num. LISTA LAMP LISTA-S LISTA-C-S ALISTA-S GLISTA (ours)

3 -39.03±0.54 -37.26±0.13 -43.12±0.06 -44.90±0.03 -43.88±0.26 -45.33±0.04
30 -29.65±0.89 -28.44±0.31 -32.30±0.17 -38.36±0.57 -31.50±0.15 -39.61±0.64

100 -21.39±0.75 -22.23±0.18 -27.08±0.57 -27.94±0.34 -27.10±0.02 -34.07±0.64

8 PROGRESSIVE TRAINING AND ADAPTIVE OVERSHOOT

Our training mostly follows it of Chen et al.’s (2018), and some key steps are listed here: 1) The
model is trained progressively to include more layers during the training phase. At the very beginning,
only learnable parameters in the first layer is considered, and parameters in the second layer is only
included once training on the first update converges, so as the third and higher layers. 2) Training after
including the t-th layer is split into three stages, with an initial learning rate of 0.0005 to optimize
its own learnable parameters first, and learning rates of 0.0001 and 0.00001 to jointly optimize all
learnable parameters from the 0-th to t-th layers in the second and third stages, respectively. We
move to the next stage once no performance gain is observed on the validation set for 4000 iterations.
3) With the three stages done on the t-th layer, training moves to include the (t+ 1)-th and the same
three stages of training are performed.

We perform an adaptive overshoot in the experiment to confirm Proposition 2. The algorithm is
summarized in Algorithm 1. Most of input variables are introduced in the main body of our paper
and τ is given as the step size for performing line search. The whole algorithm procedure is very
similar to the famous backtracking line search. The step size η for sparse coding is updated by τ until
the objective function f(x, y) + λr(x) does not decrease any more.

Algorithm 1 ISTA with adaptive overshoot.
Input: The dictionary matrix A, an observation y, an initial step size η0 = 1.0 for sparse coding, a

step size τ = 1.05 for line search, and a maximal number of iteration.
Output: output result
1: x(0) = 0;
2: for t = 0, · · · ,K − 1 do
3: x̃(t) = sλ/γ((I −ATA/γ)x(t−1) +AT y/γ);
4: xp = x̃(t), η = η0τ ;
5: xc = τ(x̃(t) − x(t))− x(t);
6: while fo(xp, y) ≥ fo(xc, y) do
7: xp = xc, η = τη;
8: xc = η(x̃(t) − x(t))− x(t);
9: x(t) = xp;

10: return x(K−1)
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